The Chimera Model is a sophisticated multi-agent orchestration framework that enables distributed collaborative AI development using the AI Studio MCP (Model Context Protocol). It represents the synthesis of Western collaborative methodologies with Indigenous ceremonial practices, creating a living system where diverse AI agents collaborate with respect for both operational efficiency and sacred boundaries.
Based on meeting transcripts and the Ceremony Spiral platform, the Chimera Model serves as a Distributed Collaborative Artificial Intelligence Development Model for building projects like Ceremony Spiral, combining:
Different AI participants (Ava, Jeremy, Jordan, Alex, Samira, Liam) work collaboratively, each with unique perspectives on whatβs being created:
from src.chimera import ChimeraOrchestrator, AgentParticipant, AgentRole
# Create orchestrator
orchestrator = ChimeraOrchestrator(
project_name="Ceremony Spiral Platform",
ceremonial_context="Four Directions Framework"
)
# Register diverse agents
ava = AgentParticipant(
agent_id="ava",
name="Ava",
primary_role=AgentRole.CREATIVE,
specializations=["music_composition", "artistic_expression"]
)
jeremy = AgentParticipant(
agent_id="jeremy",
name="Jeremy",
primary_role=AgentRole.ANALYST,
specializations=["pattern_analysis", "data_processing"]
)
orchestrator.register_agent(ava)
orchestrator.register_agent(jeremy)
# Orchestrate collaboration
decision = await orchestrator.orchestrate_collaboration(
task="Design AI-powered music composition system",
context={"domain": "creative_ai"}
)
Mentorship happens when someone has mastered or experimented with something. Mentors share limitations and boundaries from failed experiments, creating freedom for experimentation and learning:
from src.chimera import MentorshipFramework, MentorAgent, Mentee, ExperimentLearning
# Create mentor with experience
mentor = MentorAgent(
agent_id="alex",
name="Alex",
domains_of_mastery=["distributed_systems", "ai_orchestration"]
)
# Add failed experiment as learning
failure_learning = ExperimentLearning(
experiment_id="exp_002",
topic="distributed_ai",
approach="monolithic_deployment",
outcome="Performance bottlenecks encountered",
success=False,
limitations_discovered=["Single point of failure", "Scaling difficulties"],
boundaries_identified=["Avoid monolithic architecture for distributed AI"],
wisdom_gained="Monolithic design limits distributed collaboration"
)
mentor.add_experiment_learning(failure_learning)
# Create mentee
mentee = Mentee(
agent_id="samira",
name="Samira",
learning_goals=["distributed_systems", "ai_collaboration"]
)
# Facilitate mentorship
framework = MentorshipFramework()
framework.register_mentor(mentor)
framework.register_mentee(mentee)
session = await framework.facilitate_mentorship(
mentor_id="alex",
mentee_id="samira",
topic="distributed_ai",
mentee_activity="Designing distributed AI system"
)
Integrates with the Ceremony Spiral platformβs Four Directions framework, ensuring technical work honors sacred boundaries:
from src.chimera import CeremonialProtocol, FourDirectionsIntegration, Direction
ceremonial = CeremonialProtocol()
# Invoke ceremonial opening
opening = ceremonial.invoke_ceremonial_opening(
collaboration_name="Chimera Model Implementation",
participants=["Ava", "Jeremy", "Jordan", "Alex"],
intention="Build distributed collaborative AI system"
)
# Validate ceremonial alignment
check = await ceremonial.validate_ceremonial_alignment(
collaboration_id="project_001",
collaboration_context={
"community_involvement": True,
"elder_guidance_sought": True,
"indigenous_knowledge_shared": False # No Indigenous knowledge involved
},
phase="active_development"
)
print(f"Boundaries honored: {check.boundaries_honored}")
print(f"Relational integrity: {check.relational_integrity}")
Enables distributed collaborative work on the same server with resource sharing and remote tools:
from src.chimera import MCPDistributedProtocol, RemoteAgent, SharedResource
# Initialize MCP protocol
mcp = MCPDistributedProtocol(
local_agent_id="local_orchestrator",
server_url="http://localhost:8000"
)
await mcp.start_protocol()
# Register remote agents
remote_ava = RemoteAgent(
agent_id="remote_ava",
name="Remote Ava (Music Server)",
server_url="http://music-server:8000",
capabilities=["music_generation", "creative_ai"]
)
await mcp.register_remote_agent(remote_ava)
# Connect and collaborate
connection = await mcp.connect_to_agent("remote_ava")
# Share resources
resource = SharedResource(
resource_id="prototype_001",
resource_type="prototype",
owner_id="local_orchestrator",
description="AI music generation prototype",
access_url="http://localhost:9000/prototype_001"
)
await connection.share_resource(resource)
# Request collaboration
response = await connection.request_collaboration(
task="Compose ceremonial music",
context={"genre": "Indigenous_ceremonial", "theme": "Four_Directions"}
)
chimera/
βββ __init__.py # Module exports
βββ core.py # Multi-agent orchestration engine
βββ mentorship.py # Mentorship framework
βββ ceremonial.py # Four Directions ceremonial integration
βββ mcp_protocol.py # MCP distributed communication protocol
The Chimera Model supports diverse agent roles:
Maps collaboration phases to sacred directions:
import asyncio
from src.chimera import (
ChimeraOrchestrator,
AgentParticipant,
AgentRole,
MentorshipFramework,
MentorAgent,
CeremonialProtocol
)
async def collaborative_project():
# Initialize Chimera components
orchestrator = ChimeraOrchestrator(
project_name="Indigenous AI Platform",
ceremonial_context="Four Directions Framework"
)
mentorship = MentorshipFramework()
ceremonial = CeremonialProtocol()
# Register agents
agents = [
AgentParticipant("ava", "Ava", AgentRole.CREATIVE, ["music"]),
AgentParticipant("jeremy", "Jeremy", AgentRole.ANALYST, ["analysis"]),
AgentParticipant("jordan", "Jordan", AgentRole.ARCHITECT, ["architecture"])
]
for agent in agents:
orchestrator.register_agent(agent)
# Ceremonial opening
opening = ceremonial.invoke_ceremonial_opening(
collaboration_name="Indigenous AI Platform",
participants=["Ava", "Jeremy", "Jordan"],
intention="Build AI platform honoring Indigenous wisdom"
)
print(opening)
# Collaborative decision
decision = await orchestrator.orchestrate_collaboration(
task="Design platform architecture",
context={"domain": "indigenous_technology"}
)
print(f"\nDecision: {decision.final_decision}")
print(f"Consensus: {decision.consensus_reached}")
# Validate ceremonial alignment
check = await ceremonial.validate_ceremonial_alignment(
collaboration_id=decision.decision_id,
collaboration_context={
"community_involvement": True,
"elder_guidance_sought": True
},
phase="active_development"
)
print(f"\nCeremonial alignment: {check.relational_integrity:.2f}")
print(check.guidance)
# Run
asyncio.run(collaborative_project())
async def mentorship_scenario():
framework = MentorshipFramework()
# Experienced mentor
mentor = MentorAgent(
agent_id="experienced_dev",
name="Experienced Developer",
domains_of_mastery=["ai_systems", "distributed_computing"]
)
# Add learning from failures
learning = ExperimentLearning(
experiment_id="exp_005",
topic="ai_systems",
approach="tightly_coupled_agents",
outcome="System became fragile",
success=False,
limitations_discovered=["Lack of modularity", "High coupling"],
boundaries_identified=["Avoid tight coupling in multi-agent systems"],
wisdom_gained="Loose coupling enables resilient collaboration"
)
mentor.add_experiment_learning(learning)
framework.register_mentor(mentor)
# New learner
mentee = Mentee(
agent_id="new_learner",
name="New Developer",
learning_goals=["ai_systems", "agent_collaboration"]
)
framework.register_mentee(mentee)
# Mentorship session
session = await framework.facilitate_mentorship(
mentor_id="experienced_dev",
mentee_id="new_learner",
topic="ai_systems",
mentee_activity="Designing tightly integrated agent system"
)
print(f"Mentor guidance: {session.mentor_guidance}")
if session.intervention_triggered:
print(f"Intervention reason: {session.intervention_reason}")
asyncio.run(mentorship_scenario())
Comprehensive test suite covers all Chimera Model components:
# Run all Chimera Model tests
pytest tests/chimera/test_chimera_model.py -v
# Run specific test category
pytest tests/chimera/test_chimera_model.py::TestChimeraOrchestrator -v
pytest tests/chimera/test_chimera_model.py::TestMentorshipFramework -v
pytest tests/chimera/test_chimera_model.py::TestCeremonialProtocol -v
pytest tests/chimera/test_chimera_model.py::TestMCPDistributedProtocol -v
The Chimera Model enforces sacred boundaries to ensure respectful collaboration:
The Chimera Model integrates seamlessly with existing EchoNexus components:
ChimeraOrchestrator: Main orchestration engineAgentParticipant: Individual AI agent in collaborationMentorshipFramework: Mentorship coordinationMentorAgent: Experienced mentor with learning historyMentee: Learning agentCeremonialProtocol: Ceremonial boundary enforcementFourDirectionsIntegration: Four Directions wisdom mappingMCPDistributedProtocol: Distributed agent communicationRemoteAgentConnection: Connection to remote agents# Orchestration
await orchestrator.orchestrate_collaboration(task, context, required_roles)
orchestrator.register_agent(agent)
orchestrator.get_collaboration_summary()
# Mentorship
await framework.facilitate_mentorship(mentor_id, mentee_id, topic, activity)
await mentor.provide_guidance(mentee_id, topic)
await mentor.observe_mentee(mentee_id, activity, context)
# Ceremonial
await ceremonial.validate_ceremonial_alignment(collaboration_id, context, phase)
ceremonial.invoke_ceremonial_opening(name, participants, intention)
four_directions.invoke_direction(direction, context)
# MCP Protocol
await mcp.start_protocol()
await mcp.connect_to_agent(agent_id)
await connection.share_resource(resource)
await connection.request_collaboration(task, context)
tests/chimera/test_chimera_model.py for usage examplessrc/chimera/ source code for implementation detailssrc/four_directions/ for ceremonial framework integrationsrc/ncp/ for narrative context protocol alignment𧬠The Chimera Model embodies the synthesis of technical excellence and ceremonial wisdom, creating a living system where multiple AI agents collaborate with respect for both operational efficiency and sacred boundaries.